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Abstract. We propose that it is appropriate to more seriously consider
the nature of systems that are capable of learning over a lifetime. There
are three reasons for taking this position. First, there exists a body of re-
lated work for this research under names such as constructive induction,
continual learning, sequential task learning and most recently learning
with deep architectures. Second, the computational and data storage
power of modern computers are capable of implementing and testing
machine lifelong learning systems. Third, there are significant challenges
and benefits to pursuing programs of research in the area to AGI and
brain sciences. This paper discusses each of the above in the context of
a general framework for machine lifelong learning.

1 Introduction

Over the last 25 years there have been significant advances in machine learning
theory and new machine learning algorithms based on that theory. However,
there has been comparatively little work on systems that are able to learn a
variety of tasks over an extended period of time. We propose that it is now
appropriate to more seriously consider the nature of systems that are capable
of learning over a life time. In accord with [13], we call these machine lifelong
learning systems.

There are three reasons for feeling the time is right to more vigorously explore
lifelong learning systems. First, there exists a body of related work that provides
a starting point for research under names such as constructive induction, incre-
mental and continual learning, sequential task learning, and most recently learn-
ing with deep architectures. Second, the computational and data storage power
of modern computers are capable of implementing and testing lifelong learning
systems. Third, there are significant challenges and benefits to pursuing pro-
grams of research in the area to AGI and brain sciences. This paper presents a
general framework for machine lifelong learning and then discusses each of the
above reasons for further research.
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Fig. 1. A framework for machine lifelong learning

2 A Framework for Machine Lifelong Learning

The constraint on a learning system’s hypothesis space, beyond the criterion of
consistency with the training examples, is called inductive bias [3]. Inductive bias
is essential for the development of a hypothesis with good generalization from
a practical number of examples. Ideally, a lifelong learning system can select its
inductive bias to tailor the preference for hypotheses according to the task being
learned [15].

Figure 1 provides a general framework for a machine lifelong learning (ML3)
approach that uses knowledge of the task domain as a source of inductive bias [8].
As with a standard inductive learner, training examples (supervised and possibly
unsupervised) are used to develop a hypothesis of a classification task. However,
unlike a standard learning system, knowledge from each hypothesis is saved in
a long-term memory structure called domain knowledge. When learning a new
task, aspects of domain knowledge are selected to provide a beneficial inductive
bias to the learning system. The result is a more accurate hypothesis developed in
a shorter period of time. The method relies on the transfer of knowledge from one
or more prior secondary tasks, stored in domain knowledge, to the hypothesis for
a new primary task. The problem of selecting an appropriate bias becomes one
of selecting the most related knowledge for transfer. A machine lifelong learning
system typically has short-term transfer and long-term retention learning phases.
Although two phases of learning may not be necessary, it is frequently required
so as to properly consolidate the hypothesis of a new task into long-term domain
knowledge.

3 Related Work

Several prior research efforts have considered systems that learn domains of
tasks over extended periods of time. In particular, progress has been made in
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machine learning that exhibit aspects of knowledge retention and inductive
transfer. These represent advances in inductive modeling that move beyond tab-
ula rasa learning and toward machines capable of lifelong learning [13].

Utgoff and Mitchell wrote in 1983 about the importance of inductive bias to
concept learning from practical sets of training examples [14]. They theorized
that learning systems should conduct their own search for an appropriate induc-
tive bias using knowledge such as that of related tasks. They proposed a system
that could shift its bias by adjusting the operations of the modeling language.

In the mid 1980s Michalski introduced the theory of constructive inductive
learning to cope with learning problems in which the original representation
space is inadequate for the problem at hand [2]. New knowledge is hypothesized
through two interrelated searches: (1) a search for the best representational
space for hypotheses and (2) a search for the best hypothesis within the current
representational space. The underlying principle is that new knowledge is easier
to induce if search is done using the right representation.

In 1989 Solomonof began work on incremental learning [11]. His system was
primed on a small, incomplete set of primitive concepts, that are able to express
the solutions to the first set of simple problems. When the machine learns to use
these concepts effectively it is given more difficult problems and, if necessary,
additional primitive concepts needed to solve them, and so on.

In the mid 1990s, Thrun and Mitchell worked on a lifelong learning approached
they called explanation-based neural networks [12]. EBNN is able to transfers
knowledge across multiple learning tasks. When faced with a new learning task,
EBNN exploits domain knowledge of previous learning tasks (back-propagation
gradients of prior learned tasks) to guide the generalization of the new one.
As a result, EBNN generalizes more accurately from less data than comparable
methods.

Since 1995, Silver et al. have proposed several variants of sequential learn-
ing and consolidation systems using standard back-propagation neural networks
[9,10]. A system of two multiple task learning networks is used; one for short-
term learning using task rehearsal to selectively transfer prior knowledge, and a
second for long-term consolidation using task rehearsal to overcome the stability-
plasticity problem. Task rehearsal is an essential part of this system. After a task
has been successfully learned, its hypothesis representation can saved. The saved
hypothesis can be used to generate virtual training examples so as to rehearse
the prior task in parallel when learning a new task. It is through the rehearsal of
previously learned tasks within the shared representation of the neural network
that knowledge is transferred to the new task. Similarly, [9] the knowledge of a
new task can be consolidated into a large domain knowledge network without
loss of existing task knowledge by using task rehearsal to maintain the function
accuracy of the prior tasks while the representation is modified to accommodate
the new task.

In 1997, Ring proposed a lifelong learning approach called continual learning
that builds more complicated skills on top of those already developed both in-
crementally and hierarchically [4]. He presents a system that can efficiently solve
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reinforcement-learning tasks and can then transfer its skills to related but more
complicated tasks.

Rivest and Schultz proposed knowledge-based cascade-correlation neural net-
works in the late 1990s [5]. The method extends the original cascade-correlation
approach, by selecting previously learned sub-networks as well as simple hidden
units. In this way it is able to use past learning to bias new learning.

Recent research into the learning of deep architectures of neural networks can
be connected to lifelong learning [1]. Layered neural networks of unsupervised
Restricted Boltzman Machine and auto-encoders have been shown to efficiently
develop hierarchies of features that capture regularities in their respective inputs.
When used to learn a variety of class categories, these networks develop layers
of common features similar to that seen in the visual cortex of humans.

4 Current Computational and Data Storage Capacity

The number of transistors that can be placed cheaply on an integrated circuit
has doubled approximately every two years since 1970. This trend is expected to
continue until the foreseeable future, with some expecting the power of comput-
ing systems to move to a log scale as computing systems increasingly use multiple
processing cores. We are now at a point where a lifelong learning system focused
on a constrained domain of tasks (e.g. medical diagnosis, product recommen-
dation) is computationally tractable in terms of both computer memory and
processing time.

As an example, massively parallel data processing engines now exist that
are capable of competing with humans in real-time question-answer problems.
This was recently witnessed on the Jeopardy television game show in February,
of 2011. Watson consisted of 90 IBM server computers, each with four 8-core
processors. It used 15 terabytes (220 million text pages) of rapid access memory
and divided its tasks into thousands of stand-alone jobs distributed among 80
teraflops (1 trillion operations/second) of parallel processing power. Given that
much of machine learning is search, platforms such as the one used by Watson are
well suited to the challenges of lifelong learning systems. It would be important
to note that Watson’s success was in part due to advances in machine learning
methods.

5 Challenges and Benefits

There are a number of challenges for and potential benefits from new research
programs in machine lifelong learning. The following captures several of these.

There is strong evidence that transfer learning from prior related knowledge
is beneficial when learning a new task [5,10,12]. Experimental results indicate
that effective learning excels under functional transfer whereas efficient learning
requires representation transfer [7]. Recent work has also shown the benefit of
unsupervised training using many unlabelled examples as a source of inductive
bias for supervised learning [1].
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Machine lifelong learning provides an opportunity to acquire and take advan-
tage of related knowledge. However, there are many challenging problems; for
example, a lifelong learning system must weigh the relevance and accuracy of
retained knowledge along side that of the available training examples for a new
task. Theories on how to select inductive bias and modify the representational
space of hypotheses [11] will be of significant value to AGI and brain science.

Mechanisms that can effectively and efficiently retain learned knowledge over
time will suggest new approaches to common knowledge representation. In par-
ticular, methods of overcoming the stability-plasticity problem so as to integrate
new knowledge into existing knowledge are of value to researchers in AI, cognitive
science and neuroscience [9]. Efficient long-term retention of learned knowledge
should cause no loss of prior task knowledge, no loss of new task knowledge,
and an increase in the accuracy of old tasks if the new task being retained is
related. Furthermore, the knowledge representation approach should allow a life-
long learner to efficiently select the most effective prior knowledge for inductive
transfer during short-term learning.

A lifelong learning system should facilitate the practice of a task such that the
generalization accuracy of the long-term hypothesis for the task increases. But
how can a lifelong learning system determine from the training examples that it
is practicing a task it has previously learned versus learning a new but closely
related task. Related work suggests that a system should not be explicit in this
determination [6,10]; rather, the similarity of a set of training examples to that
of prior domain knowledge should be implicit; each training example should be
able to draw upon those aspects of domain knowledge that are most related.
This suggests that domain knowledge should be seen as continuum as apposed
to a set of disjoint tasks. A theory of how best to practice tasks will be useful
to the fields of AI, psychology and education.

Scalability is often the most difficult and important challenge for computer
scientists. A machine lifelong learning system must be capable of scaling up to
large numbers of inputs, outputs, training examples and learning tasks. Prefer-
ably, the space and time complexity of the learning system grows polynomially
in all of these factors.

Software agents and robots will make good use of lifelong learning systems,
or at least provide useful test platforms for empirical studies [12]. Agents and
robots will naturally encounter new examples of problems periodically, providing
opportunities to test the practice and consolidation of task knowledge.

The study of lifelong learning systems will provided insight into curriculum
and training sequences that are beneficial for both humans and machines [11,4].
This will be beneficial to robot and software agent training and will likely lead
to the confirmation of and advances in human educational curriculum.

Finally, research into machines that can learn over a lifetime involves laborious
repeated studies of lengthy sequences of problems. This is tough but rewarding
work that will become less labor intensive as experimental methods develop.
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