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ABSTRACT



	This paper compares two machine learning systems, an inductive decision tree (IDT) and a back�propagation neural network (ANN), in the non-invasive assessment of coronary artery disease given a set of diagnostic input attributes.  Background: A collection of 490 patient cases were accumulated from the reference of diagnostic stress myocardial scintigraphy performed in a nuclear medicine department.  All cases had correlating angiography, the results of which were used to derive the target diagnoses.  Input attributes included 4 base�line clinical characteristics, 4 non�imaging stress components, and 3 scintigraphic findings.  Methods: We chose four possible angiographic criteria for coronary artery disease and assessed the ability of each learning system to develop a diagnostic model. The two machine learning systems were compared on the basis of predictive performance and explanatory power.  Results: Cross-validation experiments showed the two machine learning systems to have equivalent predictive power at the same level as the clinical scan reading.  For the 70% stenosis criterion, the IDT had a sensitivity of 94±3% (mean ± 95% confidence interval) and a specificity of 59±8%, and the ANN had a sensitivity of 97±2% and a specificity of 51±13%.  However the IDT system exhibited excellent explanatory power; producing simple representations of the diagnostic models which agree with previous research.  Conclusion: In comparison with the more widely used ANNs, the IDT learning system may have advantages in certain problems in diagnostic classification.



Keywords: coronary artery disease, artificial intelligence, machine learning, artificial neural networks, inductive decision trees

�INTRODUCTION



	Machine learning is an area of artificial intelligence which has applications to medical diagnosis.  Artificial neural networks (ANN) and inductive decision trees (IDT) are two machine learning systems which have been discussed in the medical and biomedical engineering literature.  ANN's have received the greatest amount of attention (a literature search generated several hundred articles on the use of ANN's in medicine and related fields), being used for feature extraction and pattern classification in a number of areas (1, 2).  ANN's have been used extensively in nuclear medicine and radiology (3-10) and found to be successful in developing diagnostic aids.   More closely related to the present article, a number of papers report the use of ANN's in the diagnosis of cardiac ischemia and myocardial infarction from base�line clinical information and electrocardiographic data (11, 12).  Furthermore, ANN's have been used to categorize myocardial scintigraphy (13-16).  



	In contrast, the use of IDT's has been very limited (a literature search of the same medical and biomedical journals produced a total of six articles), for example (17, 18).  In a closely related article, Selker et al. (19) compare an IDT, logistic regression and an ANN. Each method was used to generate a predictive model for acute cardiac ischemia.  The conclusion was that all methods provided excellent predictive performances, and that the choice of one method over the other should be a function of the specific needs of the application.  An IDT deals best with problems involving discrete, symbolic inputs where the output of the desired model is restricted to a choice of several mutually exclusive classifications represented by a single variable.  For this type of problem, an IDT has been shown to perform as well as, or better than an ANN (20, 21).  	

�

	Understanding the strengths of a machine learning system, and the class of problems for which it is best suited is important to potential users.  In this study, an IDT and a back�propagation ANN were trained to predict the presence of coronary artery disease in a patient given a set of diagnostic input attributes.  Input attributes included 4 base�line clinical characteristics, 4 non�imaging stress components, and 3 scintigraphic results.  As the classification of coronary artery disease is best represented by a continuum, four different severity levels of arterial stenosis were used as the criteria for disease.  The two systems were compared on the basis of predictive performance and explanatory power. 



	Myocardial perfusion scintigraphy has been shown to be useful in the non-invasive diagnosis of coronary artery disease when applied to the appropriate clinical population (22,23). Scintigraphy provides (i) the overall determination of perfusion abnormalities, (ii) corroboration of ischemia (defects worse with stress than at rest), and (iii) ancillary evidence of severity (e.g. stress-induced lung uptake).  We were interested in determining the relative importance of these scintigraphic findings and also if additional decision information would be discovered by the learning systems from the ancillary clinical attributes (24,25).  If so, this should be reflected in the predictive performance of the machine learning systems and their representation of acquired knowledge.  Furthermore, the incremental value of scintigraphy, in comparison to baseline clinical data and more easily obtained test results, is not clear (26-28).  We were interested in further insights which the learning systems might provide in this regard. 



MATERIALS AND METHODS



Machine Learning



	The objective of an inductive learning system is to "experience" a problem through a set of training examples and construct a model, which explains those examples to an acceptable level of error.  Machine learning systems have their greatest utility when used to build models of complex, non�linear functions which are not easily defined through manual programming methods or parametric statistical means.  A number of learning systems have been developed and shown to perform well for certain classes of problems.  Each system can be characterized by three major factors: the representation of the input and output data, the strategy used to search for or construct the desired model, and the representation of acquired knowledge which defines the model .  In the following paragraphs, we briefly discuss these factors as they relate to the IDT and ANN systems used in the study.

�

IDT � Inductive Decision Trees



	A decision tree is a graph whose nodes are either a leaf, indicating a classification of a case, or a decision node that specifies some test to be carried out on a single attribute (29).  A decision node will, subsequently, have one branch and subtree for each possible outcome of the test.  A decision tree can be used to classify a case by starting at the root of the tree and traveling along its branches until a leaf which defines the appropriate class is encountered.  In this way, a decision tree is able to model a function such as the diagnosis of disease.  An IDT  develops a decision tree model from a set of training examples using symbolic representation much like a programmer would use logical expressions to manually build a program (18).  Typically the induction process has two phases.  The first phase reviews the training examples and constructs a decision tree with those attribute decisions which provide the most information closest to the root of the tree.  In the second phase, the tree is "pruned" using statistical inference and information theory to reduce the complexity of the tree with minimal loss of overall predictive accuracy.  In this way the smallest tree explaining all of the examples is constructed. 



	IDT systems are closely related to classification and regression tree (CART) systems (30). Both were developed during the early 1980's; CART is a result of research by statisticians into mathematical inference, whereas IDT is a product of machine learning and artificial intelligence.  The major differences pertain to the strategy used to prune the decision tree and deal with missing values within the training and test data.



	We used the IDT system developed by J. Ross Quinlan of Sydney, Australia, called C4.5 (a revised version of ID3) (31).  The system is capable of constructing a decision tree and inducing classification rules from a set of training examples which may contain unknown or noisy entries.  One of the added features of this IDT is the ability to work with continuous numeric attribute values as well as discrete values. 



	The C4.5 IDT system makes use of a strategy from information theory which attempts to construct the smallest decision tree possible, and thus minimize the model complexity in the hopes of increasing the predictive accuracy.  To this end, during the experiments, we adjusted three parameters associated with this strategy: the confidence level, the minimum weight of cases per decision node, and the grouping option (31).   The confidence level parameter (default = 25%) affects decision tree pruning.  Small values cause heavier pruning; the result being simpler trees.  If the actual test error rate is significantly higher than the estimated error rate, then the model has likely been over-fit to the training data.  This had been the case with an initial set of experiments so the confidence level was decreased from 25% to 5% in steps of 5 in order to find an optimal value.  The minimum weight parameter (default = 2) defines the smallest number of examples required to support a new branch of the tree; lower values encourage greater branching and more complex tree structures, whereas higher values discourage the generation of complex models.  Typically, the weight parameter should be increased when the training data contains a lot of noise or is biased by a disproportionate frequency of outcome.  Since noise and bias were a distinct possibility, the minimum weight parameter was increased from 5 to 25 in steps of 5.  The grouping option allows the IDT to group various values of a discrete attribute together as the system considers the best structure of the decision tree model.  We experimented with this option to see if it would provide better predictive ability or a reduction in the resulting decision tree's complexity.



ANN - Artificial Neural Networks



	The most common type of ANN employed in function approximation and classification is the feed�forward network using the backpropagation of error learning algorithm (32).  It is normally composed of an input layer of neurons, or units, connected to a hidden layer which is in turn connected to an output layer.  The weights of inter-neuron connections define the output response of the network to a set of input attributes.  This type of ANN has been described many times in the medical literature; we refer the reader particularly to (2,9,11,13).   An example of an ANN used in this study is shown in Figure 1.



	We chose the Xerion neural network system, from the University of Toronto, to conduct our backpropagation ANN experiments.  The Xerion ANN system is capable of using a number of advanced variations of the original back�propagation algorithm (33).  We made use of these more complex learning algorithms which employ conjugate gradient techniques to expedite the search for the optimal weight settings (34). 



	ANNs use a distributed numeric representation of acquired knowledge stored in the weights of its connections.  The number of weights (free parameters) in the ANN is defined, in large part, by the number of hidden units.  Too few hidden units and the network will be unable to generate an adequate model.  Too many and the search will become overly difficult (35).  In this study we experimented with the number of hidden units ranging from zero to ten. 



	A learning algorithm can over�fit a neural network to the training examples, thereby decreasing the generalization accuracy on previously unseen test examples.   We took two actions to prevent this from happening.  The first action was to limit the number of training iterations (36) so that the network model did not grow too specific to the training data.  To determine the optimal number of iterations at which to stop training, a graph of the test set error was monitored.  The second action was to add a weight�cost term to the backpropagation algorithm to cause weights which are not reinforced during training to decay to zero.  This effectively eliminates the connection and simplifies the network (34,36).  A weight-cost parameter ranging from 0.0 (no cost) to 1.0 (full cost) controls the effect of the weight-cost term.  In our experiments we varied this parameter from 0.0 through 0.5 in steps of 0.1.



	In contrast to inductive decision trees, ANNs accept only numerical inputs and generate numerical outputs.  Thus, all attributes must be encoded into a numeric representation and the output must be decoded back to an appropriate form.  The encoding of the input attributes is particularly important, since the ability of the ANN to develop an accurate model can depend upon the choice of representation (34).  Our method of encoding will be discussed in the next section.



The Patient Data



	A collection of 490 cases of stress scintigraphic data and coronary angiograms was used to train and test the machine learning systems.  Each referred patient had correlating stress�thallium scintigraphy and cardiac angiography studies (23,37).  Scintigraphy  provides a noninvasive test to detect areas of decreased perfusion, referred to as "defects", at rest and at stress.  Angiography provided the diagnostic target based on the narrowing (stenosis) of coronary arteries.  Each patient example consisted of 11 input attributes and a target classification indicating disease. Input attributes included 4 base�line clinical characteristics, 4 non�imaging stress components, and 3 scintigraphic findings.  Tables 1 and 2 provide detail on each of the attributes and the representation used for the ANN and the IDT. The following is background information on the patient data. 



·	Stress was performed using either exercise, dipyridamole, or a combination of both to attain an optimal scintigraphic result (37-39); 



·	Immediate and standard redistribution imaging at 2�4 hours after injection was performed in 3 projections with Tl�201 (20% of the patients also had further delayed imaging at 5�48 hours to assist in differentiation of scar and ischemia);  



·	Quantitative analysis of uptake and washout of Tl-201 was performed on paired stress and redistribution images in 3 projections; the left anterior oblique images were emphasized in subsequent analysis (40,41);



·	Correlating coronary angiography was performed within 4 months and read by a single cardiovascular radiologist independent from the clinical and non-invasive testing data; at our institution, all angiograms have been interpreted by this protocol for 30 years (37-39);



·	stress electrocardiograms (EKGs) recorded concurrently with stress scintigraphy were coded and re�analyzed for stress�induced cases by 2 cardiologists, with a third acting as "tie�breaker" (41); and



·	Lung/myocardial activity ratios (37,42) were determined on immediate post-stress images as a measure of severe disease.



	The diagnostic target was based on the coronary angiogram, allowing for its complexities.  Coronary atherosclerosis, of course, represents a spectrum of severity and location of lesions, which may be singular but are frequently multiple.  In assessing the diagnostic value of information derived from scintigraphy, the most common goal is the prediction of a minimal level of stenosis (usually 50% or 70%) in a single angiographic site (22).  The benefit of bypass surgery to extend longevity in coronary artery disease has only been proven for certain categories of severe or extensive disease; some investigators have focused on the role of scintigraphy in disclosing patterns of disease amenable to such intervention (26,27).   Considering the above, we chose four different criteria of arterial stenosis as the thresholds for classifying disease and then developed diagnostic models for each criterion using all 490 cases.  The first three criteria indicated three different levels of arterial stenosis (50%, 70%, and 90%) in at least one arterial site, and the final criterion indicated extensive disease in three coronary arteries (triple�vessel disease).  Table 3 defines each of the diagnostic criterion and shows the total number of patients with disease (prevalence) for each criterion along with the representation used for the ANN and IDT. 



	Four different data files, each containing 490 entries, were prepared from the patient information with the target classification set according to one of the four diagnostic criteria.  The representation of the input attributes can be crucial to the success of a learning system.  A mixture of symbolic and numeric representation could be used for the IDT.  The ANN, however, required, for each attribute, an all numeric representation in the range 0 to 1, inclusive.  We used a straight-forward representation; each attribute and the target classification was converted to a numeric value between 0.1 and 0.9 (see Tables 1,2, and 3 for details).  This choice of representation reduced the computational effort of each node in our network, minimized the size of the network and, therefore, produced shorter training times (34).



Method of Comparison



	The following were the chosen as the criteria for comparison of the ANN and IDT machine learning systems:



Predictive performance � During training, the system should determine from the examples, the underlying structure (a model) of the diagnostic function such that it is able to generalize over the domain of all possible inputs.  A measure of the systems ability to generalize is given by its ability to properly classify previously unseen patient data.  As indices of the predictive performance of the IDT and ANN we assessed sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and overall accuracy.  Based on the findings of related work (43) and the limitations documented by authors such as Feinstein (44) we did not pursue an ROC analysis; rather we developed the best models for the four diagnostic criteria and compared the above predictive indices.



Explanatory power � To support the systems predictions and provide confidence to the user, the learning system should be capable of supplying a representation of its acquired knowledge in an understandable form.  We assessed the explanatory power of each system using two indices: ease of access to explanatory information, and ease of interpretation of that information. 



	Four separate machine learning experiments were conducted.  Each experiment consisted of an initial phase in which optimal learning parameters were selected, and a final phase in which training and testing were performed.  The results from this final phase were used to compare the predictive performance of the ANN and IDT.  All experiments were conducted on a SUN Sparc�10 mini-computer, running the SUN Solaris 2.3 operating system.



	To ensure a fair assessment of the two learning systems, a k-block cross�validation was employed as the basis for experimental design (31).  In the second phase of each experiment, the available data was divided into k = 7 blocks of 70 cases so as to make the distribution of normal and disease cases as uniform as possible in each block.  From the data 7 different classification models were built, in each of which one block was omitted from the training data, and the resulting model was tested on the cases in that omitted block.  In this way, each case appeared in a single test set over the whole study.  The average error over all 7 unseen test sets could then be considered a good estimate of the error rate for a diagnostic model developed from all available data.



	To determine the predictive accuracy of a model, the target classification for each test case was compared to the output of the model.  This comparison was a straightforward task for the IDT since the system must predict either a positive (disease) or negative (normal) classification.  For the ANN, the process was slightly more complicated as the output for a test case was a numeric value ranging from 0.0 to 1.0.  All output values less than 0.5 were considered classified as negative (normal).



RESULTS



IDT - Inductive Decision Trees



	During the experiments we adjusted three learning parameters in the hopes of increasing the predictive accuracy of the IDT models: the confidence level, the minimum weight of cases per decision node, and the grouping option.  The optimal confidence level was found to be 5% (except for the triple-vessel criterion experiment for which the best level was found to be 15%).  The lower confidence value frees the algorithm to simplify the decision tree through pruning and, therefore, generalize the model with minimal loss of overall accuracy (the triple-vessel criterion with a minority of positive training examples demanded a lesser amount of pruning).  The best value for the minimum weight parameter was determined to be 20 (except for the triple-vessel criterion experiment for which the best setting was found to be 15).  At this value, the bias of the greater number of positive examples in the training example is optimally reduced (the triple-vessel criterion demanded a more finely detailed tree).  Initial experiments with the grouping option enabled simplified trees to be generated with no loss of predictive accuracy, thus it was used for all subsequent runs.



	The mean predictive classification accuracies (and 95% confidence limits) of the IDT are presented in Table 4.  The statistics for each of the four experiments (one for each diagnostic criterion) are shown graphically in Figure 2 and discussed below. 



	In a final experiment, all 490 patient cases were used to train the IDT for each of the four classification criterion.  The IDT produced a printed facsimile of the final simplified decision tree; an example is shown in Figure 3.  As can be seen in Figure 4, the simplified trees for each of the four threshold levels are easy to interpret.  The explanatory power of the resulting decision trees will be covered in the discussion.



ANN - Artificial Neural Network



	During the experiments we adjusted three variables in the hopes of increasing the predictive accuracy of the ANN models:  the number of hidden units, the weight�cost parameter, and the number of training iterations. Through a series of comparative runs, the optimum number of hidden units was found to be seven.  The best setting for the weight�cost parameter was determined to be 0.1.  At this value, the networks were able to train to a low level of error while minimizing the number of effective parameters (weights) in the network.  With the weight�cost parameter at 0.1, and using the advanced conjugate gradient search techniques, there was very little over-fitting prior to convergence on the best model. thus, it was unnecessary to manually stop the training process.  



	Table 4 and Figure 2 contrast the statistics for the ANN and IDT and compare them to a clinical reading (SCIN) based solely on the two major scintigraphic results; reversible ischemic defects (REV) and fixed defects (FIX).   Table 4 shows that the ANN and the IDT systems performed to a level of mean predictive accuracy equivalent to the clinical reading for the first three stenosis criteria with the highest accuracy being 89±2% (mean ± 95% confidence interval), obtained by the IDT on the 50% stenosis criterion.  Both learning systems exceeded the predictive accuracy of the clinical reading for the triple vessel disease criterion, 76±3% obtained by the ANN versus 31% by the clinical reading. Figure 2 provides a finer level of diagnostic detail by reporting the associated statistics for each of the four disease criterion.  Both learning systems perform to the level of the clinical reading on the first three disease criteria (sensitivity of 90% or better and a specificity between 56% and 65%), but showed their greatest value on the triple vessel criterion with a significantly higher PPV (50% versus 20% by the clinical reading) and NPV (80% versus 55% by the clinical reading).  The best overall scores were obtained for the 70% stenosis criterion; the IDT had a sensitivity of 94±3% (mean ± 95% confidence interval) and a specificity of 59±8%, and the ANN had a sensitivity of 97±2% and a specificity of 51±13%. 



	A  major short�coming of neural networks is their lack of explanatory power (34).  Currently, the only method of determining the knowledge acquired by a network is to analyze the connection weights between the input and output units and the hidden units.  Thus, access to acquired knowledge is not as direct as provided by the IDT.  The Xerion ANN system provides some excellent visual aids by which to observe the connection weights and unit activation values.  Using these tools we endeavoured to dissect the networks for diagnostic knowledge which they had acquired.  The ANN was trained using all 490 patient cases on each of the four classification criteria, and then each network was examined.  An analysis of the connection weights identified the reversible defect (REV) attribute as the principal component affecting classification.  It was not possible to determine the secondary components with an acceptable degree of confidence.   







DISCUSSION



	The following evaluates each learning system against the requirements and compares their results.



Predictive performance



	The results of the four experiments indicate that the two machine learning systems produced diagnostic models of equivalent predictive performance for the problems at hand.  Furthermore, the systems produced equal and significantly better results for the triple-vessel criterion when compared to the clinical diagnosis based solely on the scintigraphic attributes (which favoured a positive result).  The ancillary clinical and stress attributes add very little to the predictive performance of the models for lower diagnostic criteria, however, their impact becomes more significant as the level of  stenosis increases to the triple-vessel criterion.



	The technique for myocardial perfusion imaging localizes relative areas of myocardial ischemia and is therefore best targeted at disease which is single-vessel, or hemodynamically expressed in a focal area.  Not surprisingly, ancillary clinical and image information (e.g. lung uptake) may be needed to pin down diffuse coronary artery disease (such as triple-vessel), particularly if the hemodynamic consequences result in balanced hypoperfusion. Porenta et al (13) used an ANN to interpret planar thallium-201 stress and redistribution scintigrams for significant coronary artery disease (50% stenosis or greater).  Their results, based on 81 patients, show a 50% specificity at a sensitivity of 80% when compared with angiography.  Our results compare favorably with this work and lend support to their comments that machine learning systems, which take into account entire images as well as ancillary attributes, perform better than those which do not.  A complimentary article on the significance of ancillary  clinical and image data over pure image findings is given by Simons et al (25).



	The performance results reflect the complexity of predicting coronary artery disease based on a screening test (scintigraphy).  The specificity is of greatest concern, since it indicates a high number of normals incorrectly diagnosed with disease.  Suboptimal specificity is, in practice, a problem in established tests for coronary artery disease; referral bias decreases the proportion of the available cases who are angiographically normal (45).  The results also indicate difficulties encountered by the learning systems as they attempted to construct a general model based on a relatively small set of training cases.  At the outset of this study we expected the ANN to have the greater predictive power, based on the ANN's ability to search a larger and richer space of models (20).  This has proven not to be the case. Given a more sophisticated representation for certain of the input attributes, we believe the ANN performance could be marginally increased (34).  However, any marginal increase would be offset by the lack of explanatory power of the ANN.



Explanatory power



	The IDT supported its predictions with simple representations of the knowledge it had acquired from training.  Figure 3 presents an example of a decision tree produced by the IDT during the study and the ease by which it can be interpreted.  The knowledge in the model can be directly translated into a clinical tool such as a branching protocol for patient management and cost-benefit analysis.   In contrast, the ANN provided very little information other than identification of the principal component (REV) following an analysis of the connection weights.  This is a recognized short�coming of ANNs and is a current area of research (34).   As reported in a (43), linear, logistic, and step-wise regression methods suffer from the same explanatory problem.



	We now review the four decision trees developed by the IDT system during the study (see Figure 4).  The greater priority is given by the models to the scintigraphic results (23).  In each tree, reversible defects (REV) was selected as the principal component for determining disease over the electrocardiographic attributes (MIQ and STD).  This supports the results of a stepwise discriminant analysis reported by Iskandrian (46), but is in contrast to the results of a regression analysis reported by Christian (27) which found the incremental benefit of scintigraphy to be marginal (the difference between the studies may be related to patient selection).  The importance of lung uptake (LNG) can be seen to increase as the threshold level of stenosis increases from 50% to 90%, in keeping with our previous results (37,42).  The last tree in Figure 4, which shows the results for the triple-vessel disease criteria, considers reversible defects in two or more regions as indicating the greatest probability of disease.  This result is inherently logical as stenosis in three vessels would precipitate more widespread abnormalities in the scintigraphy. 



	Figure 4 demonstrates the ability of a decision tree representation to depict the important, but secondary, role of certain attributes in decision making.  Notice the use of non�scintigraphic attributes in the criterion B and D decision trees.  With the criterion of 70% stenosis (B), we see that the presence of infarction (MIQ attribute) plays a decisive role.  In those cases where there was both a history and electrocardiographic evidence of infarction, the patient is classified as having disease despite the scintigraphy indicating no defects.  With the triple�vessel criterion (D), ST depression (STD) and two other clinical factors (GEN, AGE) play a role, as well as one of the ancillary stress�test components (KPM).  It is clear from this tree that, when applicable, the IDT took advantage of additional information provided by non�scintigraphic attributes; this is reflected in the statistics of Table 4 and Figure 2. 



CONCLUSIONS



	In this study we have compared two machine learning systems, an IDT and an ANN, on the basis of their predictive performance and explanatory power when applied to the non-invasive diagnosis of coronary artery disease.  We conclude that the IDT is the better system for this problem.  It provides equivalent predictive performance to the ANN while delivering an easily  interpreted model of the diagnostic process.   The analysis of the decision trees for the four diagnostic criteria for coronary artery disease confirms the importance of the scintigraphic attributes.  It also clarifies the secondary role of the various clinical and stress attributes as the stenosis threshold changes.   



	More generally we conclude that for a diagnostic problem involving small numbers (less than 15) of well defined (discrete valued) input attributes, with a single, binary diagnosis, an IDT learning system should be considered an excellent choice.  The IDT's ability to provide the user with a clear facsimile of acquired knowledge in the form of a simplified decision tree should be stressed.  This provides added confidence in the predictions, and provides a mechanism whereby important decision criteria can be fed back into the medical diagnostic process.   Given the appropriate clinical data, IDTs are particularly suited for developing a taxonomy for diagnosis which can be used on an individual patient basis (44).
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�FIGURE LEGENDS



Figure 1	A depiction of the artificial neural network configuration (with 4 hidden nodes) used in the study.  See Tables 1 and 2 for explanation of input parameters. 



Figure 2	The predictive performance statistics for the IDT and the ANN systems for the four diagnostic criteria, and for the clinical reading (SCIN) based on only the REV and FIX scintigraphic results.  The four statistics reported are: SENS = sensitivity, SPEC = specificity, PPV = positive predictive value, and NPV = negative predictive value.  All bars indicate the mean over 7 runs of a 7-way cross-validation.  The error bar indicates 95% confidence intervals for the mean.  



Figure 3	A simplified decision tree produced by the IDT for diagnostic criteria B.  See Tables 1, 2, and 3 for detailed definitions of the attributes and their values.  The tree reads as follows:  If the reversible defects (REV) parameter is other than normal (NO) then the diagnosis is that the patient has DISEASE with a probability of 86%.  If reversible defects is normal (NO) then check the patients myocardial infarct history and ECG Q-wave.  If there is evidence of BOTH, then the patient has DISEASE with a probability 80%.  If there is no substantial MIQ evidence than consider the lung uptake ratio (LNG).  If it is greater than 0.5 then the patient should be considered to have DISEASE with a probability of 42%.  Otherwise the patient is to be considered NORMAL with a 28% probability of disease.



Figure 4	An interpreted representation of the decision trees generated by the IDT for each of the four diagnostic criteria.  See Tables 1, 2, and 3 for detailed definitions of the attributes and their values.  Each graph shows the decision tree displayed on a graph of the probability of disease.  The tree developed for Criterion A reads: If reversible defects (REV) is other than normal (NO) then the diagnosis is disease with a probability of 94%.  If reversible defects is normal (NO) then check for fixed defects (FIX); if there are fixed defects then the diagnosis is disease with a probability of 88%, otherwise the patient should be considered normal (33% probability of disease).

�

TABLE 1: Summary of clinical data, stress modalities (37,38), and their representation for machine�learning systems.







�PRIVATE ��ATTRIBUTES��	NUMBER

	OF VALUES�	VALUES�	REPRESENTATION�������IDT�	ANN��BASELINE CLINICAL DATA:����	���AGE�Age of patient in years�	58�	years: lowest value

	highest value�	28

	86�	0.10

	0.90��GEN�Gender of patient�	2�	female

	male�	F

	M�	0.10

	0.90��MIQ�Myocardial infarct history and Q-wave observation (36) on rest electrocardiogram (ECG)�	3�	no history & ECG normal

	history or ECG normal

	history & ECG abnormal�	NO

	ONE

	BOTH�	0.10

	0.50

	0.90��HBP�Hypertension by history and BP exam (36)�	3�	no history & bp normal

	history or bp abnormal

	history & bp abnormal�	NO

	ONE

	BOTH�	0.10

	0.50

	0.90��STRESS-TEST COMPONENTS:�������DIP�Dipyridamole (37), a coronary vasodilator�	2�	not given

	given�	NO

	YES�	0.10

	0.90��KPM�Exercise workload (37) in 100's of kpm�	18�	continuous: lowest

	highest value�	0

	18�	0.10

	0.90���

TABLE 2: Summary of non-imaging and scintigraphic results of stress tests, and their representation for learning systems.







�PRIVATE ��ATTRIBUTES��	NUMBER

	OF VALUES�	VALUES�	REPRESENTATION�������	IDT�	ANN��NON-IMAGING RESULTS:�������CP�Chest pain induced by stress (37)�	3�	no pain

	pain

	pain, drug given�	NO

	YES

	YRX�	0.10

	0.50

	0.90��STD�Consensus of 3 cardiologists re: stress ECG (millivolts of ST depression)�	15�	continuous: normal

	severe abnormality�	0.0

	7.0�	0.10

	0.90��SCINTIGRAPHIC RESULTS:�������REV�Ischemia detected from nuclear medicine images (based on number of coronary artery regions showing defects with net wash-in of Tl-201) (39,40)�	5�	normal

	qualitative, visually

	positive in 1 region

	positive in 2 regions

	positive in 3 regions�	NO

	VIS

	QT1

	QT2

	QT3�	0.10

	0.30

	0.50

	0.70

	0.90��FIX�Detection of a fixed thallium defect on nuclear medicine images�	2�	negative

	positive�	NO

	YES�	0.10

	0.90��LNG�Lung uptake = lung/myocardial ratio on immediate post-stress images (36)�	65�	continuous: lowest

	highest value�	0.29

	0.94�	0.10

	0.90��

�



TABLE 3: Summary of the four chosen diagnostic criterion for disease, the number (percent) with disease derived from angiography, and their representation for the machine-learning systems.





�PRIVATE ��CRITERION IDENTIFIER

�	ANGIOGRAPHIC 

	CRITERION�	NUMBER (PERCENT)

	WITH DISEASE�	REPRESENTATION

          IDT                    ANN  ���	A�any 50% stenosis (main artery or branch)�	407 (83.1)�	NORMAL

	DISEASE�	0.1

	0.9

��	B�70% stenosis in at least 1 of 3 main arteries�	373 (76.1)�	NORMAL

	DISEASE�	0.1

	0.9

��	C�critical stenosis (4) score ³ 1.0 - equivalent to a 90% stenosis�	319 (65.1)�	NORMAL

	DISEASE�	0.1

	0.9

��	D�stenoses (50%) in 3 arteries - triple-vessel disease�	133 (27.1)�	NORMAL

	DISEASE�	0.1

	0.9���





TABLE 4: A comparison of test accuracy of the two machine-learning systems (IDT, ANN) and the clinical reading (SCIN) using only the REV and FIX scintigraphic attributes.  The first value indicates the mean over 7 runs of a 7-block cross-validation.  The value in brackets indicates the ±95% confidence interval in the respective mean.







�PRIVATE ���	CRITERION

	A

�	CRITERION

	B�	CRITERION

	C�	CRITERION

	D��SCIN

�	.89 (.02)�	.86 (.02)�	.78 (.03)�	.31 (.04)��IDT

�	.89 (.02)�	.86 (.02)�	.79 (.04)�	.73 (.05)��ANN

�	.86 (.04)�	.86 (.02)�	.77 (.05)�	.76 (.03)��





�



DECISION TREE FOR CRITERION B: 70% STENOSIS





If REV is VIS, QT1, QT2, or QT3 ® DISEASE (.858)

If REV is NO and 

	If MIQ is BOTH ® DISEASE (.800)

	If MIQ is NO or ONE then

		If LNG £ 0.5 ® NORMAL (.281)

		If LNG > 0.5 ® DISEASE (.417)







	REV = reversible defect

	MIQ = myocardial infarct; patient history and Q-wave observation

	LNG = lung uptake ratio

�
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