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Abstract— Fundamental to the problem of lifelong machine
learning is how to consolidate the knowledge of a learned
task within a long-term memory structure (domain knowledge)
without the loss of prior knowledge. We investigate the effect
of curriculum, ie. the order in which tasks are learned, on the
consolidation of task knowledge. Relevant background material
on knowledge transfer and consolidation using multiple task
learning (MTL) neural networks is reviewed. A large MTL
network is used as the long-term memory structure and task
rehearsal overcomes the stability-plasticity problem and the loss
of prior knowledge. Experimental results demonstrate that cur-
riculum has an important effect on the accuracy of consolidated
knowledge particularly for the first few tasks that are learned.
The results also suggest that, for given set of tasks and training
examples, the mean accuracy of consolidated domain knowledge
converges to the same level regardless of the curriculum.

I. INTRODUCTION

The majority of machine learning research has focused on
the single task learning approach where a hypothesis for a
single task is induced from a set of training examples with
no regard to previous learning or to the retention of task
knowledge for future learning. In contrast, humans take ad-
vantage of previous learning by retaining task knowledge and
transferring this knowledge when learning a new and related
task. Life-long learning is a relatively new area of machine
learning research concerned with the persistent and cumulative
nature of learning [13]. Life-long learning considers situations
in which a learner faces a series of different tasks and develops
methods of retaining and using task knowledge to improve
the effectiveness (more accurate hypotheses) and efficiency
(shorter training times) of learning. Our research investigates
methods of knowledge retention and transfer within the context
of artificial neural networks and applies these methods to life-
long learning problems, such as learning accurate medical
diagnostic models from small samples of a patient population
[11].

One of the fundamental problems in developing a life-
long learning system is devising a method of retaining task
knowledge in an efficient and effective manner such that it
can be later used when learning a new task. We argue that
this requires the consolidation of new task knowledge with
previously learned task knowledge within a domain knowledge
structure. In [12] we present a theory of task knowledge
consolidation within the context of multiple task learning

(MTL) neural networks and test the theory on a synthetic
domain of tasks. The results indicate that it is possible to
sequentially consolidate task knowledge through the rehearsal
of previously learned tasks so as to overcome the stability-
plasticity and the loss of prior task knowledge. This paper
expands on this work by investigating the effect of curriculum
(the order in which tasks are learned) on the consolidation
process. Through a series of experiments we demonstrate
that curriculum has an important effect on the accuracy of
consolidated knowledge particularly for the first few tasks that
are learned. The experiments also suggest that, for a given
set of tasks and training examples, the mean accuracy of
consolidated domain knowledge converges to the same level
regardless of the curriculum.

II. BACKGROUND

The constraint on a learning system’s hypothesis space,
beyond the criterion of consistency with the training examples,
is called inductive bias [6]. For example, Occam’s Razor
suggests a bias for simple over more complex hypotheses.
Inductive bias is essential for the development of a hypothesis
with good generalization from a practical number of examples.
Ideally, a life-long learning system can select its inductive bias
to tailor the preference for hypotheses according to the task
being learned. One type of inductive bias is prior knowledge
of the task domain [1]. The retention and use of task domain
knowledge as a source of inductive bias remains an open
problem in machine learning [13], [2].

In [9] we define knowledge-based inductive learning as a
life-long learning method that uses knowledge of the task
domain as a source of inductive bias. As with a standard
inductive learner, training examples are used to develop a
hypothesis of a classification task. However, unlike a standard
learning system, knowledge from each hypothesis is saved
in a long-term memory structure called domain knowledge.
When learning a new task, aspects of domain knowledge are
selected to provide a positive inductive bias to the learning
system. The result is a more accurate hypothesis developed in
a shorter period of time. The method relies on the transfer of
knowledge from one or more prior secondary tasks, stored in
domain knowledge, to the hypothesis for a new primary task.
Consequently, the problem of selecting an appropriate bias
becomes one of selecting the most related task knowledge for
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Fig. 1. A multiple task learning (MTL) network with an output node for
each task being learned in parallel. The representation formed in the lower
portion of the network is common to all tasks.

transfer. Much of our prior work has focused on knowledge
transfer and the measurement of task relatedness for the
purposes of learning a new task [10]. The following provides
a review of those aspects of knowledge transfer that that
are relevant to the discussion of knowledge retention and
consolidation.

A. Knowledge Transfer

Multiple task learning (MTL) neural networks are one of the
better documented methods of knowledge functional transfer
[2]. An MTL network is a feed-forward multi-layer network
with an output for each task that is to be learned. The standard
back-propagation of error learning algorithm is used to train
all tasks in parallel. Consequently, MTL training examples are
composed of a set of input attributes and a target output for
each task. Figure 1 shows a simple MTL network containing
a hidden layer of nodes that are common to all tasks. The
sharing of internal representation is the method by which
inductive bias occurs within an MTL network [1]. MTL is a
powerful method of knowledge transfer because it allows two
or more tasks to share all or part of internal representation to
the extent to which it is mutually beneficial. The more that
tasks are related the more they will share representation and
create positive inductive bias.

B. Selective Transfer and Task Rehearsal

In [9] we developed a method of knowledge transfer that
distinguishes knowledge from related and unrelated tasks; such
a method was previously lacking [2], [13]. ηMTL, a modified
version of MTL, was created to provide a solution to the
problem of selective transfer of secondary task knowledge.
Using a measure of secondary task to primary task relatedness
an ηMTL network can favourably bias the induction of a
hypothesis for a primary task. Various functional and structural
measures of relatedness are proposed and compared in [10].
The conclusion is that a consolidated representation of all
previously learned tasks would provide the best source for
knowledge transfer because it provides the basis for measuring
deep structural similarity between tasks.

In [11] the task rehearsal method was introduced as a
knowledge-based inductive learning system that is able to

retain and recall learned task knowledge. Building on the
theory of pseudo-rehearsal [8], previously learned but un-
consolidated task representations are used to generate virtual
examples as a source of functional knowledge. After a task
Tk has been successfully learned (to a specified level of
generalization accuracy), its hypothesis representation is saved
in domain knowledge. This representation acts as a surrogate
for the space of input-output examples that defines task Tk.
Virtual examples of the input-output space for Tk can be
produced (with the same level of generalization error) by
passing inputs to the domain knowledge representation for
Tk and recording the outputs. When learning a new task, T0,
the domain knowledge representations for tasks T1...Tk...Tt

are used to generate corresponding virtual output values from
the set of T0 training examples. The resulting set of virtual
examples is used to relearn or rehearse the domain knowledge
tasks in parallel with the learning of T0 in an MTL or ηMTL
network. It is through the rehearsal of previously learned tasks
that knowledge is transferred to the new task.

C. The Need for Consolidated Domain Knowledge

Long-term knowledge retention is necessary for a
knowledge-based inductive learning system, however, it is not
sufficient. Domain knowledge must be integrated in a system-
atic fashion for the purposes of efficient (minimize storage)
and effective (maintain hypothesis accuracy) retention and
for more efficient (rapid indexing) and effective (appropriate
choice of related knowledge) transfer during future learning.
The process of integration we define as consolidation of task
knowledge and the resulting representation we define to be
consolidated domain knowledge [12].

The question of how new task knowledge can be consol-
idated into an existing neural network without loss of prior
knowledge is interesting and challenging. In fact, it is the
stability-plasticity problem originally posed by [3] taken to
the level of learning sets of tasks as opposed to learning sets
of examples. The stability-plasticity problem points out the
difficulty in trying to learn a new example within a neural
network while at the same time trying to maintain knowledge
of previously learned examples. The loss of the previously
learned knowledge has been referred to as catastrophic forget-
ting [5].

D. Consolidation Through MTL and Task Rehearsal

Consolidation using a connectionist network was first pro-
posed in [4]. The report suggests a method by which the
neocortex of the mammalian brain consolidates new knowl-
edge without loss of previous knowledge. Consolidation occurs
through a slow process of interleaved learning of new and
old knowledge within a long-term memory structure of sparse
representation. Earlier work with MTL networks showed an
ability to simultaneously learn a variety of tasks of a domain
from small random weights without loss of accuracy provided
there are sufficient training examples and sufficient internal
representation [2]. However, there are two problems that must
be overcome if MTL networks are to be used to sequentially



consolidate domain knowledge: (1) preventing the catastrophic
forgetting of previously learned tasks already existing within
the MTL network, particularly unrelated tasks, and (2) avoid-
ing high-magnitude weight representations that frustrate the
learning of new internal features. In [12] we propose that
MTL and the task rehearsal method provides a mechanism
for sequentially consolidating task knowledge that addresses
these issues as well as those of efficient and effective retention
and transfer.

1) Effective Storage: Experimental results described in [12]
demonstrate that consolidation can be accomplished within
an MTL network provided that: (1) task rehearsal is used to
maintain prior task knowledge while knowledge of each new
task is integrated, (2) there are sufficient training examples to
ensure that features are maintained and created for all tasks,
(3) there is sufficient internal representation within the network
for learning each task independent of all others, (4) learning
occurs slowly (small learning rate) in order to increase the
probability of creating internal features that are useful to all
tasks and (5) there is a method of early stopping to prevent
the over-fitting of new task knowledge and the creation of
high magnitude weights [7]. This approach can also be seen
as a step toward a general solution to the stability-plasticity
problem that results in the catastrophic loss of prior neural
network knowledge.

2) Efficient Storage: MTL networks provide an efficient
representational form for the consolidation of knowledge from
multiple tasks. Network representation provides significant
space savings over the original training examples and the
shared use of internal representation by related hypotheses
reduces redundant storage. The time required to consolidate
each new task into an ever-growing MTL network would
seem to continually increase. However, we show in [12] that
the average time to consolidate a new task into an existing
MTL network will decrease as the number of previously
consolidated tasks increases. This is because the probability
of the MTL network already having the required internal
representation (common features) for a new task increases as
the number of previously consolidated tasks increases.

3) Effective Retrieval: Our previous research into knowl-
edge transfer has shown that the most effective methods of
determining the relatedness between two tasks are structural
measures that calculate a task’s use of a common internal
representation. MTL networks provide a common internal
representation and the degree to which tasks share features of
this representation have been shown to be powerful measures
of task relatedness [11].

4) Efficient Retrieval: We are actively working on structural
measures of relatedness based on statistics such as the cosine
similarity of hidden to output weights and the mutual infor-
mation of task outputs with respect to the features generated
at the hidden node layer. These measures can be computed in
time polynomial in the number of tasks stored in consolidated
domain knowledge.

III. CURRICULUM AND THE CONSOLIDATION OF TASK
KNOWLEDGE

A. Definition

The American Heritage Dictionary of the English Language,
Fourth Edition, defines curriculum as: “a group of related
courses, often in a special field of study”. Intuitively, one can
imagine a curriculum of courses to have a particular structure
or hierarchy. Certain courses must be taken before others since
they provide the fundamental groundwork and provide a basis
for knowledge transfer. In other words, things that one has
learned in introductory courses will enable more efficient and
effective learning in upper-year courses. In the same way,
individual courses are structured in such a way that they begin
with the basics and work their way to more complex material.

By extension, we can apply the same idea to a domain
of tasks to be learned by a learning system. In [12], we
simply considered the sequential consolidation of tasks with-
out paying attention to the order in which they were being
consolidated. This paper begins the exploration into the task
order, which we define as the curriculum.

B. Curriculum Types
We propose that there are various types of curricula, each

of which use different techniques of capturing the various
internal features used by the tasks of the domain. Recall that an
internal feature is a particular combination of inputs that one
or more hidden nodes in the network is capable of detecting.
The following outlines the range of different types of curricula
based on the speed of feature acquisition.

On one end of the spectrum is the rapid feature capture
curriculum; this ordering of tasks forces the network to create
all the internal features as soon as possible. Consider k tasks
from a domain that each utilize g internal features from a total
of f features. The rapid feature capture curriculum will capture
g features for each of the first f mod g tasks. This provides
all subsequent tasks with the necessary prior knowledge for
developing accurate models. Unfortunately, this means that
in the early stages of consolidation there is no knowledge
transfer. During this time, the overall mean accuracy of the
consolidated tasks may be adversely affected.

On the opposite end of the spectrum is the gradual feature
capture curriculum; this ordering spreads out the acquisition
of the various features over the greatest number of tasks. This
class of curricula would capture g features when learning
the first task, then 1 feature over the next f + 1 − g tasks.
This curriculum has the advantage that each new task can
receive beneficial prior knowledge from the consolidated tasks.
Therefore, the overall mean accuracy of the consolidated tasks
will remain stable or increase. Its disadvantage is the number
of tasks that must be learned in order to acquire all the internal
features used by tasks in the domain.

Assuming there are sufficient training examples to learn
each task to an appropriate accuracy level, we propose that
the mean accuracy over all consolidated tasks will converge
to the same level regardless of the curriculum. This will occur
if all curricula learn the same tasks.



IV. EXPERIMENTS

To test our theory of the effect of curriculum on the
sequential consolidation of task knowledge in a MTL network
we conduct a series of experiments on a synthetic domain
of tasks. Our objectives are (1) to examine the effect on
consolidated task accuracy under various short curricula where
the order of tasks varies by their relatedness to each other and
(2) to examine the effect on task accuracy when learning a
larger set of tasks under various curricula.

The first experiment consolidates six different curricula of
three tasks where the relatedness between each task varies
from no relation to full reuse of previously learned internal
representation. The study examines the variation in consol-
idated task accuracy (based on an independent test set) as
the system moves through the curriculum. We anticipate that
gradual feature capture curricula will maintain or increase their
accuracies, whereas rapid feature capture curricula may show
some loss of accuracy. The second experiment examines the
variation in consolidated task accuracy under eight different
curricula of six tasks. Our expectation is that the mean
accuracy over all tasks will tend to converge to a narrow
band of values regardless of the curricula because all internal
features are eventually learned and shared.

Both experiments were conducted using the Research and
Application System for Lifelong Learning, RASL3, developed
at Acadia1. RASL3 is capable of single task learning, variants
of multiple task learning and task rehearsal via the generation
of virtual examples from retained task knowledge (consoli-
dated or unconsolidated).

A. Test Domain

The Logic domain consists of eight synthetic tasks where
each task’s output is a boolean logic function of 4 variables.
Table I presents the entire domain of tasks. The goal in design-
ing the domain was to create a set of non-linearly separable
classification tasks that shared two linearly separable features
in various ways. The features used are boolean expressions
of the form (x > 0.5 ∨ y > 0.5), where x and y are input
variables. The domain has ten inputs, labelled a through j

which generate 6 unique features. The tasks of the domain
vary in their degree of relatedness to one another based on
their shared use of these features. For example, T5 shares the
feature (g > 0.5 ∨ h > 0.5) with tasks T2 and T3 and feature
(i > 0.5∨j > 0.5) with T4. Because all tasks are non-linearly
separable, at least two hidden nodes are required to form an
internal representation of the features for each task. For each
task, 2 hidden nodes form a disjunction of two inputs and then
an output node forms a conjunction of 2 hidden nodes. This
suggests that the minimum configuration of an MTL network
for consolidating all tasks would be 10 input, 6 hidden and 7
output nodes.

The examples of the Logic domain tasks were randomly
generated for each repeated study. 500 examples were gen-

1See (http://birdcage.acadiau.ca/iitrl)

TABLE I
DESCRIPTION OF THE TASKS OF THE LOGIC DOMAIN. EACH OF THE

TASKS IS A LOGICAL EXPRESSION OF FOUR OF THE INPUT VARIABLES.

Task Name Logical Expression for Task
T0 (a > 0.5 ∨ b > 0.5) ∧ (c > 0.5 ∨ d > 0.5)
T1 (c > 0.5 ∨ d > 0.5) ∧ (e > 0.5 ∨ f > 0.5)
T2 (c > 0.5 ∨ d > 0.5) ∧ (g > 0.5 ∨ h > 0.5)
T3 (e > 0.5 ∨ f > 0.5) ∧ (g > 0.5 ∨ h > 0.5)
T4 (e > 0.5 ∨ f > 0.5) ∧ (i > 0.5 ∨ j > 0.5)
T5 (g > 0.5 ∨ h > 0.5) ∧ (i > 0.5 ∨ j > 0.5)
T6 (i > 0.5 ∨ j > 0.5) ∧ (a > 0.5 ∨ c > 0.5)
T7 (a > 0.5 ∨ b > 0.5) ∧ (e > 0.5 ∨ f > 0.5)

erated for each task as a training set; 200 examples for a
validation set and 1000 examples for an independent test set.

B. General Method

The MTL neural networks used in the experiments have an
input layer of 10 nodes, one hidden layer (common feature
layer) of 20 nodes, and an output layer of up to 7 nodes, one
for each task. As each task is learned one output node is added
to the network and the weights between the hidden nodes
and this output node are initialized to small random values.
To maintain prior domain knowledge, all secondary tasks are
rehearsed within the network as the new task is learned. The
existing consolidated representation of the secondary tasks is
used to generate virtual examples for rehearsal by passing the
training examples for the new task through the representation
and producing the corresponding target outputs.

In all experiments, the mean square error (MSE) cost
function is minimized by the back-propagation algorithm that
uses a momentum term. Preliminary training determined that
a learning rate of 0.01 and momentum term of 0.9 were good
choices for the experiment. Prior to consolidation the weights
of all MTL networks are randomly initialized to values in
the range -0.1 to 0.1. For all experiments, training proceeds
for up to 10,000 iterations or until the average MSE over the
validation sets decrease to a specified maximum level. The
network representation is saved at this point. Each experiment
reports the results of five repetitions using different random
initial weights for each repetition.

Performance of the methods is compared in terms of the
effectiveness of maintaining the accuracy of the consolidated
domain knowledge tasks within the MTL network. Effective-
ness is measured as the mean proportion of correct classifica-
tions (accuracy), over all repetitions, made by the hypotheses
against a 1000 example test set.

C. Experiment 1: Consolidating Six Curricula of Three Tasks.

1) Method: This experiment examines the consolidation of
six different curriculum of three tasks as shown on Table II.
The relatedness between each task varies from no relation to
full reuse of previously learned internal representation. The
study examines the variation in consolidated task accuracy
(based on an independent test set) as the system moves through
the curriculum. We expect that curricula C011 and C012 that
gradually capture internal features will increase their mean



TABLE II
TABLE OF CURRICULA USED IN THE EXPERIMENT 1.

ID Curriculum of Tasks Comments
C000 T0, T3, T6 rapid feature capture
C001 T0, T3, T5

C002 T0, T3, T2

C010 T0, T1, T5

C011 T0, T1, T2

C012 T0, T1, T7 gradual feature capture

accuracies over the sequence of tasks. In contrast, we expect
C000 to suffer from a lack of knowledge transfer over the
curriculum because its three tasks are unrelated (do not share
any features).

When consolidation of each task begins, the errors on the
previously learned tasks are very small. Only the new task
shows significant error. This guides the back-propagation algo-
rithm to find and/or create the necessary internal representation
for the new task. This process will interfere with the rehearsal
of the previously consolidated tasks and drive their error rates
upward temporarily. However, over several thousand iterations,
sufficient internal representation will be found for all tasks and
the mean error rate should drop below the tolerance level. In
this way task rehearsal is used to maintain the accuracy of
prior task knowledge while the new task is consolidated into
the MTL network.

2) Results and Discussion: Figure 2 show the results from
the six curricula studied in this experiment. Each graph shows
the variation in test set accuracy as the first, second and
third task is integrated into the consolidated MTL network. In
general, the results indicate that it is possible to consolidate
new task knowledge into the MTL network without significant
loss of prior task knowledge. More specifically, the results
verify that the C00 curriculum suffers from the least amount of
knowledge transfer during consolidation. The mean accuracy
over these tasks drops off because the hypothesis for T3 and
then T6 do not receive inductive bias (previously learned
features) from their predecessors. C001 does slightly better
because the hypothesis for T5 within the network makes use
of the previously learned feature that detects inputs g and h

(refer to Table I). The C002 curriculum results in even higher
mean accuracy because the final hypothesis for T2 can take
advantage of internal features for inputs c, d, g and h. C010 is
interesting because it shows an increase in the mean accuracy
when learning the second task, T1, but a drop in accuracy
when learning the final task, T5. This makes sense because
the hypothesis for T1 can take advantage of the feature that
detects inputs c and d whereas the hypothesis for T5 must learn
its features strictly from the training examples. Finally, C011
and C012 do well as predicted. There tasks continually use
previously consolidated task knowledge while learning new
features.

D. Experiment 2: Consolidating Eight Curricula of Six Tasks.

1) Method: This experiment tests the consolidation method
on eight different curricula of tasks that vary in their related-
ness to one another. The objective is to show that under the
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Fig. 2. Results of Experiment 1. Shown is the mean classification accuracy
and standard error versus the number of tasks as a function of curriculum.

proper conditions that the mean accuracy over all tasks will
tend to converge to a narrow band of values regardless of the
curricula because all internal features are eventually learned
and shared under each curriculum. We will consider the
proper conditions to be the values chosen for the four factors
examined in the first experiment: a learning rate of 0.01, 20
hidden nodes, 500 training examples and with a validation set
of 200 examples to prevent over-fitting. The eight curricula
contain C1 = T0, T1, T2, T3, T4, T5 and seven others that were
randomly selected. C1 is one of the best possible orderings
as it is a gradual feature capturing curriculum; each new task
can take advantage of one or more internal features that have
been learned from a previous task.

After each new task is learned the consolidated MTL
network representation is saved. Before training begins on the
next task, this consolidated MTL network is used as the initial
representation (e.g. for C1, T1 will be learned starting from
the MTL network representation for T0; T2 will be learned
starting with the consolidated MTL network representation
for T0 and T1; etc). Only the weights between the hidden
nodes and the new task output node are initialized to small
random values. All previously learned tasks of the sequence
are rehearsed within the network when consolidating a new
task. The existing consolidated MTL network is used as the
source of the virtual examples for this rehearsal.

2) Results and Discussion: Figure 3 shows a wide variation
in mean classification accuracy over the various curricula. This
is partially because of differences in the training examples for
each of the tasks and partially because of the differences in
the curricula. Curriculum C1 exhibits what we expected when
learning tasks T0, T1 and T2 but then a slow but study decline
in accuracy is observed through to consolidation of the final
task, T5. This is because of an averaging effect over all of the
tasks that becomes increasing similar across curricula as all
internal features of domain of tasks is learned.

V. SUMMARY AND CONCLUSION

This paper extends the work reported in [12]. It addresses
the question of how the order of tasks can affect the overall
accuracy of the neural network model. We have defined this
order to be the curriculum of tasks and outlined different types,
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Fig. 3. Results of Experiment 2. Shown is the mean classification accuracy
versus the number of tasks as a function of curriculum.

including the two extreme cases being the rapid feature capture
curriculum and the gradual feature capture curriculum.

As shown in the experimental results, task curriculum has an
important effect on the accuracy of consolidated knowledge. In
particular, the choice in curriculum will greatly affect accuracy
for the first few tasks that are learned. The results also suggest
that if all the tasks of a domain are learned, the mean accuracy
of domain knowledge converges to the same overall level
regardless of curriculum. Future work in this area will continue
to probe into the effects of curriculum using a variety of data
domains.
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