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ABSTRACT

Bacterial heat-shock response is a global regulatory system required for effective adaptation
to changes (stress) in the environment. Several of the important genes involved in this
control, such as the genes coding for the chaperones GroE and DnaK (the bacterial
homologues of Hsp60 and Hsp70) are localized in operons, with organization typical of the
phylogenetic group. In Escherichia coli, where it has been studied initially, the expression
of the heat-shock operon is transcriptionally controlled by the employment of the heat-
shock transcription activator - factor σ32, that recognizes specific heat-shock promoters.
Later studies indicated that in most bacteria the control of these heat-shock operons is more
complex than in the γ-purple proteobacteria and involves several regulatory elements. One
such control element is a repressor that regulates transcription of heat-shock genes by
binding to a conserved regulatory inverted repeat (IR=CIRCE) located upstream to heat-
shock operons. In addition, this IR determines the stability of the transcript, thus controlling
the level of translation. Sequence analyses suggest that the IR-dependent control of  heat-
shock genes was the first control element and was lost during evolution in several
phylogenetic groups, such as the γ-purple proteobacteria.

Introduction

The heat-shock response involves the induction of many proteins - called heat-shock
proteins, or Hsp’s - in response to elevation of temperature (37). The bacterial heat-shock
response is not limited to changes in temperature and is a general stress response, as many
of the heat-shock proteins are induced by other environmental changes, such as the addition
of ethanol, heavy metals, high osmolarity, pollutants, starvation or interaction with
eukaryotic hosts (3, 16, 34, 50, 51). The heat-shock proteins include chaperones and
proteases that are presumably essential for overcoming changes that involve protein
denaturation. Induction of this response improves thermotolerance, salt tolerance and
tolerance to heavy metals (18, 24, 25, 38, 52). Moreover, in several bacterial species heat-
shock proteins have been shown to play an important role in pathogenesis (5, 7, 22, 23, 26-
29, 31, 41, 47) and survival within macrophages (2). Heat-shock proteins are also essential
for stationary phase (34) and for bacterial differentiation in myxobacteria and in Bacillus
subtilis (12, 53).

The heat-shock response controls the expression of more than 20 genes (9, 37) that code
for chaperones, proteases and regulatory proteins. Two of these proteins, Hsp70 (the
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product of the bacterial dnaK gene), and the Hsp10+Hsp60 complex (products of the
groESL operon), act as chaperones, are highly conserved (6, 15), and have been extensively
studied in many organisms, including a large variety of bacterial species. The present review
deals with the various bacterial strategies for regulating the heat-shock response.

Activation of specific heat-shock promoters by an alternative sigm factor
(heat-shock sigma factor, or σ32)

In bacteria, the major control of the expression of heat-shock genes is transcriptional. In
Escherichia coli the heat-shock response is controlled by a specific sigma factor that
activates the transcription of heat-shock genes under the appropriate conditions. This heat-
shock sigma factor (σ32) is coded by the rpoH gene and binds to specific heat-shock
promoters located upstream of heat-shock genes (4, 10, 11, 30, 48). The expression of the
rpoH gene is under complex regulation (21, 30, 36, 56), and under non heat-shock
conditions its product is degraded by a specific protease, the product of the hflB (ftsH) gene
(8, 13, 14, 17, 20, 21, 49). The consensus sequence of the heat-shock promoter has been
identified upstream of many heat-shock genes, and no other control elements have been
found.

Transcriptional activation of heat-shock genes by release of repression
involving an inverted repeat (IR, CIRCE) and a repressor protein (product of
the hrcA  gene)

In low-G+C gram positive bacteria, such as Bacillus subtilis, the heat-shock genes are
transcribed by the vegetative sigma factor (σ70), and heat-shock induction is mediated by
the release of a repressor that under non-heat conditions is bound to an inverted repeat
located at the upstream regulatory region of heat-shock operons. This inverted repeat (IR) -
also called CIRCE  (controlling IR of chaperone expression) - acts as the binding site for
the repressor protein Orf39 (or OrfA, in B. subtilis), the product of the hrcA gene.
Deletions of the IR result in constitutive expression of the operon (1, 16, 19, 33, 39, 40, 42,
45, 46, 54, 55, 57).  The IR is highly conserved as demonstrated in Fig. 1.and has so far
been found only in the upstream region of groE, dnaK and dnaJ operons.

Mycobacterium tuberculosis cTAGCACTC-N9-GAGTGCTAg
Staphylococcus aureus TTAGCACTC-N9-aAGTGCTAA
Bacillus subtilis TTAGCACTC-N9-GAGTGCTAA
Chlamydia pneumoniae TTAGCACT t-N9-GAGTGCTAA
Brucella abortus TTAGCACTC-N9-GAGTGCTAA
Bordetella pertusis TTAGCACTC-N9-GAGTGCTAA

Fig. 1. The conserved inverted repeat in heat-shock operons.

Transcriptional activation of heat-shock genes in α-purple proteobacteria

In bacteria belonging to the α subdivision of proteobacteria - Agrobacterium tumefaciens,
Bradyhizobium japonicum and Caulobacter crescentus, the IR element is present in the
groE operon or in one of  the groE operons in bacteria that have more than one such
operons (32, 46) but not in any of the dnaK operons. All the heat-shock operons of α-
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purple proteobacteria contain a unique heat-shock promoter, presumbaly activated by a
sigma 32-like transcription factor (43). The putative consensus heat-shock promoter is
different from both the vegetative and the heat-shock promoter consensus sequences of E.
coli. The unique heat-shock promoter is transcribed by a heat-shock activator, σ32-like
factor that differs from its homologue of the γ-purple proteobacteria in several regulatory
aspects, as well as in promoter recognition (35, 36, 43).

Experimental results indicate that the σ32-like transcription factor controls the heat-
shock activation of the dnaK operons as well as the groE operons while the IR functions to
repress transcription of the groE operon under non heat-shock conditions (45). This
situation is different from the low G+C gram positive bacteria where the IR actually
controls the heat-shock gene activation.

Post transcriptional control elements

The control mechanisms described above act at the level of transcription. Two additional
regulatory elements of the heat-shock response are post-transcriptional. The first
mechanism involves regulation of the stability of transcripts containing the IR in their
upstream portion. In B. subtilis and in A. tumefaciens (45, 54), the half life of the groEL
transcript increased two fold under non heat-shock conditions when deletions were
introduced into the IR.  The second post-transcriptional control was demonstrated in A.
tumefaciens and involves specific cleavage of the groESL operon transcript (44), leading to
differential expression of the two genes of the operon. This mRNA processing is
temperature-dependent and is probably the first example of a controlled processing of
transcripts in bacteria.

Phylogenetic aspects

The evolution of the various strategies for controlling the heat-shock response is an
interesting problem. The phylogenetic analysis based on the non synonymous substitutions
of groE and dnaK indicates that the control system involving the repressor-binding IR
(CIRCE) is the ancient control mechanism. It was lost first in the dnaK operons, three times
in Cyanobacteria, in Streptomyces and in the purple proteobacteria (α, β and γ subdivision).
The next event resulted in the loss of the IR from the groE operon in one family - the γ2/γ3
subdivision of purple bacteria. The latter family is the only eubacterial family that controls
the heat-shock response solely with an alternative sigma factor.
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