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ABSTRACT

Mycorrhizal fungi form a mutualistic symbiosis with plants and play an important role in
regulating community and ecosystem functioning.  These plant-fungal associations are
geographically widespread, being found in terrestrial ecosystems ranging from deserts to
lowland tropical rain forests to high latitudes. Studies of mycorrhizal community dynamics
and activity are important in that these organisms influence plant production and nutrient
cycling in terrestrial biomes.  Moreover, such studies are necessary to better understand
how significantly human activities can affect mycorrhizal activity, functioning and
succession.  For example, in Canada and other developed countries, agricultural practices
such as crop rotations, pesticide use and fertilizer applications can eliminate or severely
reduce the incidence of mycorrhizal activity.  Likewise, slash and burn production systems
in the tropics and the clear cutting of forests in temperate regions can cause similar losses
in mycorrhizal activity and diversity.  Other anthropogenic activities such as mining,
generation of air pollution, and waste disposal are also detrimental to mycorrhizae.
Understanding the consequences of human activities for mycorrhizal fungi and their
associations with plants can help us find ways to protect and conserve the diversity of these
important soil organisms, and encourage strategies to alleviate the impacts of past
disturbances.

Introduction

Mycorrhizal fungi are ubiquitous and colonize >85% of land plants, and are an important
and integral component of natural ecosystems.  The most common types of mycorrhizae
are arbuscular mycorrhizae and ectomycorrhizae. Mycorrhizal fungi are important in
agriculture and forestry as bidirectional nutrient transfer between host and fungal
endophyte (i.e., drain of host carbon and uptake of soil mineral nutrients) drive many
nutrient cycling processes in soil.

The advantages of a diverse and healthy mycorrhizal community include better survival
and nutrition of plants in stressed environments.  Of all the factors that influence
mycorrhizal community dynamics and associations with plants, human activities may be
considered one of the most important.  This paper briefly reviews the impact of human
activities that may significantly alter the diversity and activity of mycorrhizae in terrestrial
ecosystems.

Agricultural activities

Agricultural practices such as soil cultivation and fallow periods, crop rotations,
monoculture, non-host crops, crop breeding programs, and the indiscriminate use of
fertilizers and pesticides affect the diversity and activity of mycorrhizae.  The external
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mycelium of arbuscular mycorrhizal fungi (AMF) acts as an extension of host plant roots
and serves as a direct link between roots and soil nutrient reserves.  The cultivation of soil
breaks up the AMF hyphae network leading to a significant reduction in mycorrhizal
colonization of roots [28] and P absorption from soil [12, 28].  The effect of cultivation on
AMF diversity is not clear.  However, it is probable that cultivation of soil exacerbates the
die-off of unfit AMF propagules, leading to a loss in diversity.

Continuous monoculture of a mycorrhizal host may lead to a significant reduction in
mycorrhizal root colonization [39] and in the number of AMF spores [40].  Furthermore,
monocultures select for ineffective AMF which drain host photosynthates [22] and cause
plant stunting and yield depressions [16].  Thus, potentially beneficial AMF may be lost in
monoculture systems.

Fallow periods or growing a non-mycorrhizal host have a profound effect on AMF
activity and diversity [2, 43, 13].  Long fallows (>12 months) severely reduce the AMF
propagule density (i.e., by up to 40%) because of the absence of a living host.  This results
in a reduction of the subsequent root colonization of host plants by AMF and consequently,
plant P uptake [43].  Similar to other crop rotation practices, fallow periods may also cause
the loss of rare and weak AMF species.

Crop breeding programs may expedite the loss of AMF diversity by selecting plant
genotypes that form ineffective associations with AMF.  For example, high yielding
modern wheat cultivars may be non-responsive to mycorrhizae [17, 46].  Given that AMF
are obligately biotrophic, this may lead to the selective proliferation of AMF which are not
mutualists, but rather parasitic on the host.  Hence, the selection of non-responsive host
genotypes can eventually lead to the loss of AMF activity and diversity.

The indiscriminate use of fertilizers and pesticides can affect mycorrhizal activity and
diversity.  High rates of fertilizers are applied to obtain maximum yield.  However, high
soil fertility levels inhibit the formation of both ecto and endomycorrhizae [3, 32]. For
example, high P levels depress mycorrhizal spore germination and spore viability [42, 31].
Furthermore, the application of high levels of fertilizers leads to the build-up of a P
tolerant AMF community over time [21, 8].  This may result in a reduction in AMF-
derived benefits due to unidirectional nutrient transfer.  The indiscriminate use of
pesticides and fungicides also leads to a reduction in spore numbers [27] and diversity
[38].  In addition, high levels of some pesticides also reduce AMF colonization of roots,
resulting in reduced AMF activity [34, 44].  Some pesticides inhibit hyphal elongation of
ectomycorrhizae, leading to tree damage and subsequently a loss of propagule activity,
density and diversity.

Non-agricultural activities

Land and air pollution, mining, deforestation caused by slash and burn strategies and
accidental forest fires constitute some of the most important non-agricultural activities that
impact on the activity and diversity of mycorrhizae.

Pollution

The most common industrial air pollutants emitted into the atmosphere include SO2, NO-x
and O3.  These air pollutants induce a serious loss in the viable mycorrhizae propagules
[33]. Furthermore, these pollutants may cause a significant reduction in the colonization of
roots [11], a severe degradation in the qualitative and quantitative aspects of mycorrhizae
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connections between trees, a reduction in the mycorrhizal incidence in healthy trees and a
reduction in the enzyme activity of ectomycorrhizal roots [18].

Air pollutants can cause a significant reduction in root growth and mycorrhizal
colonization, and a change in mycorrhizal species composition, leading to loss in
mycorrhizae diversity [29, 11].  Ozone poses an indirect threat to mycorrhizae activity and
diversity [5].  Ozone damage leads to lowered net photosynthesis, altered carbon
allocation, and deterioration of photosynthetic pigments.  The reduced level of
photosynthesis leads to reduced growth and biomass of seedlings, and therefore reduces
and alters mycorrhizal assemblages around roots resulting in the loss of mycorrhizal
diversity [5, 11].  The deposition of excessive ammonia from the atmosphere is believed to
cause physiological alterations such as cellular acidosis in plant and mycorrhizal species
which are sensitive to high levels of acidity, leading to changes in mycorrhizal
assemblages around roots, and therefore affecting mycorrhizae diversity [35].

Terrestrial pollutants such as heavy metals, polyaromatic hydrocarbons and industrial
wastes adversely impact on mycorrhizae activity and diversity.  For example, high levels
of heavy metals severely decrease the number of ectomycorrhizal fruiting bodies and the
number of fruiting species, resulting in a loss of viable mycorrhizae, their activity and
diversity [7].  Furthermore, mycorrhizal colonization and spore germination are reduced in
soils containing high concentrations of heavy metals, resulting in a reduction in spore
numbers [26].  Certain heavy metals impair specific mycorrhizal functions, (e.g., indole
acetic acid synthesis) which limit mycorrhizal development [24].  The presence of high
levels of heavy metals and nutrients such as P and Zn in industrial sludge can suppress
AMF spore germination in soil [4, 25, 45].  Hydrocarbons reduce the proportion of
arbuscules in roots compared to non-polluted soils, reducing mycorrhizal activity [6].

Forestry practices

The production and survival of ectomycorrhizal fruiting bodies or spores are very limited
in the absence of healthy host plant roots [37].  Therefore, clearcut harvesting may reduce
the activity and diversity of ectomycorrhizae [14, 15].  However, the effect of clearcut burn
on the formation of ectomycorrhizal tips is even more detrimental [14].  This is believed to
be brought about by an increase in soil pH and/or available nutrients [23], which may
eliminate sensitive mycorrhizae species, resulting in loss of diversity.

Aboveground burning of vegetation is known to increase biomass production, flowering
and seed production, probably by stimulation of biological processes such as nitrification
and mineralization [19].  However, spore production of mycorrhizal fungi associated with
the root systems of plants in the burned sites is drastically depressed, which in turn reduces
mycorrhizal activity and delays potential mycorrhizae-derived benefits [10, 30].  The post-
fire re-establishment of mycorrhizal fungi is slow, due to the reduced viability of
mycorrhizal propagules as a consequence of fire. Furthermore, by inducing changes in host
physiology, burning appears to selectively depress the spore abundance of some AMF or
morphotypes of some ectomycorrhizal fungi, clearly resulting in the loss of mycorrhizal
diversity [9, 30].

Mining and soil disturbance

Several studies have indicated that AMF play a crucial role in the revegetation of disturbed
soil  [36].  However, in most cases these soils are inoculated with AMF to augment the
levels of indigenous AMF in the soil.  This is because the native AMF in these disturbed
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soils produce limited AMF colonization, and make no significant contribution to the
establishment, survival or growth of plants in these soils [1]. Furthermore, mining also
reduces the diversity, AMF spore numbers and mycorrhizal inoculum potential of the
disturbed soil [41].  These changes in mycorrhizal ecology may be induced by alterations
in the physical, chemical and biological characteristics of the soil.  Alternatively, the
drastic reduction in mycorrhizal infectivity may be due to the severity of disturbance on the
very sensitive mycorrhizal external mycelium following mining or cultivation of soil [20].

Conclusions

Mycorrhizae are a large component of the soil ecosystem, either due to their ubiquitous
nature or the benefits that can be derived from them.  Mycorrhizae can contribute to and
serve as indicators of plant and soil health.  They are essential in the establishment and
survival of plants.  However, due to human oversight or lack of understanding the
importance of mycorrhizae, many of our activities have resulted in the loss of mycorrhizal
diversity and activity.  It is important to educate the public, government regulatory
agencies and industry on how human activities influence the activity and diversity of this
important group of beneficial fungi.
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